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CONS P EC TU S

C ycloisomerizations of enynes are probably the most representative
carbon�carbon bond forming reactions catalyzed by electrophilic

metal complexes. These transformations are synthetically useful because
chemists can use them to build complex architectures under mild condi-
tions from readily assembled starting materials. However, these trans-
formations can have complex mechanisms. In general, gold(I) activates
alkynes in the presence of any other unsaturated functional group by
forming an (η2-alkyne)�gold complex. This species reacts readily with
nucleophiles, including electron-rich alkenes. In this case, the reaction
forms cyclopropyl gold(I) carbene-like intermediates. These can come from
different pathways depending on the substitution pattern of the alkyne
and the alkene. In the absence of external nucleophiles, 1,n-enynes can
form products of skeletal rearrangement in fully intramolecular reactions,
which are mechanistically very different from metathesis reactions initiated by the [2þ 2] cycloaddition of a Grubbs-type carbene
or other related metal carbenes.

In this Account, we discuss how cycloisomerization and addition reactions of substituted enynes, as well as intermolecular
reactions between alkynes and alkenes, are best interpreted as proceeding through discrete cationic intermediates in which gold(I)
plays a significant role in the stabilization of the positive charge. The most important intermediates are highly delocalized cationic
species that some chemists describe as cyclopropyl gold(I) carbenes or gold(I)-stabilized cyclopropylmethyl/cyclobutyl/homoallyl
carbocations. However, we prefer the cyclopropyl gold(I) carbene formulation for its simplicity and mnemonic value, highlighting
the tendency of these intermediates to undergo cyclopropanation reactions with alkenes.

We can add a variety of hetero- and carbonucleophiles to the enynes in the presence of gold(I) in intra- or intermolecular
reactions, leading to the corresponding adducts with high stereoselectivity through stereospecific anti-additions. We have also
developed stereospecific syn-additions, which probably occur through similar intermediates. The attack of carbonyl groups at the
cyclopropyl carbons of the intermediate cyclopropyl gold(I) carbenes initiates a particularly interesting group of reactions. These
trigger a cascade transformation that can lead to the formation of two C�C and one C�O bonds. In the fully intramolecular
process, this stereospecific transformation has been applied for the synthesis of natural sesquiterpenoids such as (þ)-orientalol F
and (�)-englerin A.

Intra- and intermolecular trapping of cyclopropyl gold(I) carbenes with alkenes leads to the formation of cyclopropanes with
significant increase in the molecular complexity, particularly in cases in which this process combines with the migration of
propargylic alkoxy and related OR groups. We have recently shown this in the stereoselective total synthesis of the antiviral
sesquiterpene (þ)-schisanwilsonene by a cyclization/1,5-acetoxy migration/intermolecular cyclopropanation. In this synthesis, the
cyclization/1,5-acetoxy migration is faster than the alternative 1,2-acyloxy migration that would result in racemization.

1. Introduction
Cycloisomerizations of enynes proceed by mechanistically

complex, multistep transformations and can lead to com-

plex architectures by fully intramolecular processes. The

pioneering work on the electrophilic activation of enynes

was carried out by the group of Trost in the 1980s using

palladium catalysts.1 These early studies were followed by

several groups that examined other electrophilic metals,

mainly ruthenium2 and platinum.3�7 The potential of gold

catalysis in organic synthesis was demonstrated with the

development of efficient additions of alcohols and water to

alkynes under mild conditions by Teles8 and Tanaka,9 as
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well as by the phenol synthesis discovered by Hashmi using

gold(III).10 This synthesis of phenols by cyclization of furans

with alkynes was shown to be mechanistically related to

some metal-catalyzed cycloisomerization reactions.11,12 In

2004, our group13 and those of F€urstner14 and Toste15

reported that gold(I) complexes were the most active and

selective catalysts for the cycloisomerization of enynes. A

mechanistically related gold(I)-catalyzed Conia-ene reaction

of β-ketoesters with alkynes was also reported by Toste in

2004.16 Henceforth, homogeneous gold(I) catalysis experi-

enced an outburst leading to the discovery of a phenomenal

amount of new synthetically useful transformations. In

addition to the important synthetic achievements made in

the past decade in this area, the nature of the gold�carbon

bond in intermediates of type [LAuCHR]þ, which are in-

volved in many gold(I)-catalyzed transformations, has in-

spired certain debate on the role played by gold(I) in the

stabilization of these carbocationic species.17�19

Several reviews have covered synthetic and mechanistic

aspects of homogeneous gold catalysis.20�28 In this Ac-

count, we focus on the developments of gold(I) catalytic

transformations derived from our early studies on the cy-

cloisomerization of simple enynes that have led to the

discovery of complex cascade reactions.

2. Gold(I)-Catalyzed Cyclization of Enynes
Broadly, gold(I) selectively activates alkynes in the presence

of alkenes and other functional groups.20 The high alkyno-

philicity of gold(I) does not reflect any thermodynamic

preference for its coordination to alkynes, but it correlates

with the higher reactivity of the resulting (η2-alkyne)�gold(I)

complexes toward nucleophilic attack.29 In analogy to that

shown in related cyclizations catalyzed by platinum(II),3�6

activation of the alkyne functionality by gold(I) forms an

(η2-alkyne)�metal complex 1 that reacts as an electrophile

with the alkene to form cyclopropyl gold(I) carbene-like

intermediates 2 or 3 by an anti-5-exo-dig or a 6-endo-dig

cyclization, respectively (Scheme 1).13,30�33 Intermediates 2

can evolve to generate new rearranged carbenes 4 by the

formal insertion of the terminal alkene carbon into the

alkyne carbons. These new carbenes 4 undergo R-proton
elimination to yield 1,3-dienes 5, the products of an overall

double-cleavage rearrangement. In this process, both the

alkyne and the alkene have been cleaved in an intramole-

cular transformation. Although products with both config-

urations have been observed in this rearrangement, often

compounds Z-5 (R =H) are obtained.34,35 On the other hand,

intermediates 3 of 6-endo-dig cyclization can lead to

bicyclo[4.1.0]hept-2-ene derivatives 6 by R-proton
elimination.36�39 Alternatively, isomerization of 3 by ring

expansion of the cyclopropane gives (η2-cyclobutene)�
gold(I) complexes 7. The opening of these gold(I) complexes

can form complexes 8, precursor of 1,3-dienes 9, in a

transformation in which only the alkene has been cleaved.

Highly strained bicyclo[3.2.0]hept-5-enes, which are the free

ligands of 7, have been isolated only in a few cases.30,40,41

Less strained cyclobutenes resulting from a formal [2 þ 2]

cycloaddition have been obtained in the cyclization of 1,7-

and 1,8-enynes.6,30,31,37,42 Intermediates 7 can also undergo

isomerization to give bicyclo[3.2.0]hept-2-ene derivatives

10.36,37 Similarly, 1,5-43,44 and 1,7-enynes undergo rearrange-

mentswithgold(I) catalystsbysomewhat relatedpathways.30,45

According to DFT calculations, the syn-5-exo-dig cycliza-

tion via intermediates 11 does not compete with the other

two pathways.30,31 Exocyclic carbene intermediate 2,

formed in the anti-5-exo-dig pathway, can also give rise to

products of single-cleavage rearrangement 9 through tran-

sition state TS2�12 and intermediates 12.30

The pathway followed by a particular enyne is highly

dependent on its substitution pattern. Thus, 1,6-enyne 13a

SCHEME 1. General Pathways for the Gold(I)-Catalyzed Cycloisomeri-
zation of 1,6-Enynes
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with a terminal alkyne andadisubstituted alkene reactswith

a cationic catalyst formed in situ from [Au(PPh3)Cl] andAgBF4
to form exclusively single-cleavage rearrangement diene

14a (Scheme 2).13,30 An identical product 14awas obtained

from 1,6-enyne 13b, with the methyl substituent at the

alkyne, in an equally highly selective double-cleavage

rearrangement.37 Although the gold(I)-catalyzed single-clea-

vage rearrangement is usually a stereospecific process in

which the configuration of the alkene is retained,13,30,46

reaction of (E)-1,6-enynes such as 13c�f, bearing strongly

electron-donating substituents at the terminal alkene car-

bon, react anomalously with cationic gold(I) catalyst

A36,47,48 to give selectively Z-configured dienes 14b�e.49

The same Z-preference was observed with other highly

electrophilic gold(I) or platinum(II) catalysts. The Z-isomers

of enynes 13c and 13d also give rise to Z-dienes with gold(I)

or platinum(II) catalysts.49 The stereochemically anomalous

rearrangement remains mechanistically puzzling.

It is important to emphasize that, in contrast to Pd(II)1 and

Pt(II),5,50,51 gold(I) does not promote Alder�ene cycloisome-

rizations of 1,n-enynes.30 The Alder�ene cycloisomeriza-

tion would require the simultaneous coordination of gold(I)

to the alkyne and the alkene, which is not favorable for a

metal that prefers a linear bicoordination. Furthermore, the

oxidation of gold(I) to form a gold(III) metallacycle, a

mandatory step in an Alder�ene cycloisomerization, is also

a very unlikely process.37,52

Conventionally, we prefer to depict complexes of type 2

as cyclopropyl gold(I) carbenes, to highlight their propensity

to undergo cyclopropanation reactions, although DFT calcu-

lations showed that these are highly delocalized species that

can also be described as gold(I)-stabilized cyclopropyl-

methyl/cyclobutyl/homoallyl carbocations.20,30 The bond

between Au and C in gold(I) carbenes [LAudCHR]þ has been

described as a half-double bond.19

Cyclizations of 1,5-enynes also proceed through species

that are intermediate between a bicyclic gold(I) carbene and

an open carbocation.53 The highly electrophilic carbene of

the intermediate species formed in these cycloisomeriza-

tions can even undergo formal C�H insertion reactions at

β-C�H bonds leading to new cyclopropanes.54

3. Gold(I)-Catalyzed Nucleophilic Additions to
Enynes
In the presence of alcohols or water, gold(I) catalyzes the

addition of these nucleophiles to the enynes leading to

products of alkoxy- or hydroxycyclization (Scheme 3).13,30

The overall process is an anti addition of an electrophile (the

(η2-alkyne)�gold(I) complex) and a heteronucleophile to an

alkene. Therefore, this reaction is stereospecific, as illu-

strated in the methoxycyclizations of diastereomers 13g

and 13h, which afford diastereomeric adducts 15a and

15b, respectively, by attack of MeOH to intermediate 16a

(Scheme 3). In these transformations, the catalyst was gen-

erated by protonolysis of the gold(I)�carbon bond of pre-

catalyst [Au(PPh3)Me] with a strong Brønsted acid. These

processes follow the Markovnikov regiochemistry, which

is further illustrated by the reaction of substrate 13i inMeOH

to form six-membered ring 15c through intermediates

of type 16b. Related additions to 1,5-enynes are also

stereospecific.55�57

A few exceptions have been observed with the most

polarized substrates. Thus, whereas reaction of enyne 13j

in MeOH as solvent gives the product of methoxycyclization

15d as a single anti isomer, in agreement with the general

behavior observed by other 1,6-enynes in similar reactions

catalyzed by gold13,30 or platinum,6 when the reaction of

13j was performed with only 5 equiv of MeOH, adduct 15d

was obtained as a 3:2 anti/syn mixture of stereoisomers

(Scheme 3).49

Additions of carbon nucleophiles to enynes can also be

carried out in the presence of gold(I).58�61 Thus, for example,

reaction of 1,6-enyne 13k with indole, an electron-rich

SCHEME 2. Single- and Double-Cleavage Rearrangement of 1,6-
Enynes
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heteroarene, leads to adducts 17a and 17b by nucleophilic

attack at the cyclopropyl or carbene carbons, respectively, of

intermediate 18 (Scheme 4).58,59 Adduct 17a was favored

using phosphine�gold(I) complex A, whereas complex B

with an NHC ligand directed the nucleophilic attack at the

carbene carbon, leading to adduct 17b. This result can be

explained by the enhancement of the carbene-like character

of the intermediate 18 by the highly donating NHC ligand.

The 6-endo-dig cyclization pathway predominates in the

case of the addition of indole to phenyl-substituted enyne

13l, which leads stereospecifically to adduct 19, while in the

case of substrate 13m, the electron-rich arene attacks at

the most substituted alkene carbon leading to 20.59 The

addition of 1,3-dicarbonyl compounds and allyl silanes to

1,6-enynes, as well as similar additions of diverse carbon

nucleophiles to 1,5-enynes are also catalyzed by cationic

gold(I) catalysts.59

Related intramolecular arylations of 1,6-enynes,62,63 as

well as additions of carboxylic acids to enynes,17 have been

proposed to take place in a concerted manner following the

Stork�Eschenmoser model for cyclizations of squalene and

oxidosqualene. However, the results of Schemes 3 and 4

and other related studies64 are best accommodated if dis-

torted cationic cyclopropyl gold(I) carbenes are involved as

discrete intermediates. A similar type of intermediate is

probably also involved in processes in which two carbon

bonds are formedby electrophilic syn-addition to the alkene.

An illustrative case is the intramolecular [4 þ 2] cyclization

of aryl alkynes with alkenes to form tricyclic derivatives

(Scheme 5).36,38 This reaction of 1,6-enynes such as 13n is

stereospecific and, according to DFT calculations, proceeds

stepwise through intermediate 22, which evolves by a

Friedel�Crafts-type reaction to form the final tricyclic deri-

vative 21a.38 Similarly, 1-naphthyl substituted 1,6-enyne

13o gives tetracyclic derivative21b, and a related 1,7-enyne

23 gives rise to 21c. Recently, we have obtained enantio-

meric excesses up to 88% in the same [4þ 2] cycloadditions

of aryl-substituted 1,6-enynes using chiral gold(I) phosphite

complexes derived from 3,30-bis(triphenylsilyl)-1,10-bi-2-
naphthol.65 Chiral biphosphine gold(I) catalysts had also

been used for this type of [4 þ 2] cycloadditions of aryl-

substituted 1,6-enynes.66 The reaction of benzyl-substituted

SCHEME 3. anti-Addition of Heteronucleophiles to 1,6-Enynes SCHEME 4. Addition of Arenes and Heteroarenes to 1,6-Enynes
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1,5-enyne 24 also occurs in a similar manner to afford 25,53

with the skeleton of the natural product (þ)-pycnanthuqui-

none C (26).

4. Gold(I)-Catalyzed Intermolecular Reactions
of Alkynes with Alkenes
The parent intermolecular reaction between alkynes and

alkenes catalyzed by gold(I) was a challenge since all the

conceivable products are themselves substituted alkenes,

which can compete with the initial alkene leading to oligo-

merization products. In addition, electron-rich alkenes,

which would be the best partners for this reaction, would

coordinate preferentially with gold(I), thus reducing the

concentration of the active (η2-alkyne)�gold(I) complex.

After much experimentation with different gold(I) com-

plexes, cyclobutenes 27 were obtained as the products

of this intermolecular reaction by using cationic gold(I)

complex D with a very bulky phosphine (Scheme 6).67

The observed regiochemistry of this [2 þ 2] cycloaddition

is consistent with a reaction proceeding by electrophilic

addition to the alkene via TS28�29 to form a highly distorted

cyclopropyl gold(I) carbene 29, which undergoes ring ex-

pansion through TS29�30 to give (η2-cyclobutene)�gold(I)

complex 30. Intermediate 29 was also trapped intramole-

cularly with an alkene to form the corresponding cyclo-

propane.67 This process has been extended for the synthesis

of large macrocycles such as 32 from enyne 31 by intramo-

lecular [2 þ 2] cycloaddition (Scheme 7).68

Interestingly, the intermolecular reaction of propiolic acid

with alkenes proceeds through regioisomeric cyclopropyl

gold(I) carbene intermediates 35, in which gold bonds to the

internal carbon of the alkyne (Scheme 8).69 Asymmetrically

substituted alkenes, such as styrene, give lactones 33 by

attack of the carboxylic acid to the most substituted carbon

of the alkene. On the other hand, alkenes with two identical,

or very similar, substituents evolve by 1,3-migration to form

stereospecifically 1,3-dienes 34.

It is interesting that a very similar transition state to

TS34�35 for the formation of 1,3-dienes from propiolic

acid69 had been also proposed in a seemingly different

context. Electrophilic gold(I) catalysts promote the retro-

Buchner reaction of 7-substituted 1,3,5-cycloheptatrienes,

SCHEME 5. Formal [4 þ 2] Cycloaddition of Arylalkynes with Alkenes SCHEME 6. [2 þ 2] Cycloaddition of Arylalkynes with Alkenes
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generating substituted gold(I) carbenes and a molecule of

benzene.70 This reaction proceeds by retrocyclopropanation

of the norcaradienes, which are in tautomeric equilibrium

with the cycloheptatrienes. Other related retrocyclopropa-

nations have been observed in the presence of gold(I).71,72

In the case of 7-cyclopropylcycloheptatriene 36, the reaction

leads selectively to Z,Z-1,4-diphenyl-1,3-butadiene (Z,Z-37),

whose formation can be rationalized by the evolution of

cyclopropyl gold(I) carbene 38 through TS38�37 by 1,3-shift

of a CHPh fragment (Scheme 9). This transition state is also

very similar to that involved in the single cleavage rearran-

gement (TS2�12, Scheme 1). The ring expansion of 38 to

form cyclobutene 39, which would have afforded E,E-37 by

conrotatory opening, was not observed in this system.70

5. Gold(I)-Catalyzed Cyclopropanation of
Enynes
The carbene-like character of the intermediates formed in

metal-catalyzed cycloisomerizations is more clearly mani-

fested in intra- and intermolecular cyclopropanation of

alkenes.2,7,73 Thus, reaction of dienynes 13p and 13q with

gold(I) leads stereoselectively to tetracyclic compounds 40a

and 40b (Scheme 10). These cyclopropanations occur

through intermediates such as 41 or 42 for intermolecular

processes,74,75 in a concerted althoughhighly asynchronous

manner. Intramolecular cyclopropanations of 1,5-enynes

proceed similarly through an endo-carbene.53 However,

cyclopropanation of 1,6-enynes occurs stepwise for more

polarized alkenes such as styrenes, although the overall

process is still stereospecific since formation of the second

carbon�carbon bond occurred with a very small activation

energy.75 Other theoretical calculations also suggest that

the cyclopropanation of electron-rich alkenes by gold(I)

carbenes proceeds by a stepwise mechanism.76

Dienynes such as 13r substituted with OR groups at

the propargylic position react with gold(I) catalysts by

SCHEME 7. Macrocyclization via [2 þ 2] Cycloaddition of Alkynes with
Alkenes

SCHEME 8. Divergent Pathways in the Reaction of Propiolic Acid with
Alkenes

SCHEME 9. Generation and Evolution of a Cyclopropyl Gold(I) Carbene
by Retro-Buchner Reaction of 7-Cyclopropyl-1,3,5-cycloheptatriene 36

SCHEME 10. Cyclopropanation of Alkenes via Cyclopropyl Gold(I)
Carbene Intermediates



908 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 902–912 ’ 2014 ’ Vol. 47, No. 3

Gold-Catalyzed Rearrangements and Beyond Obradors and Echavarren

intramolecular 1,5-migration of OR groups to form tricyclic

compounds 43a,b, which are structurally related to the

sesquiterpenes globulol and epiglobulol (Scheme 11).77

This result is consistent with a reaction occurring via inter-

mediate 44, in which the OR group attacks the cationic

center to form bridged system 45. Opening of 45 then leads

to an R,β-unsaturated gold carbene/allyl gold cation 46a,

which undergoes intramolecular cyclopropanation with

the alkene at the side chain to give 43a. In the presence

of CD3OD, intermolecular addition of this external nucleo-

phile to 44 leads to 47, which then gives rise to 43b-d3
via 46b.

Other 1,6-enynes bearing different OR groups at the

propargylic position react similarly to form R,β-unsaturated
gold carbenes/allyl-gold cations related to 46. Thus, enyne

13s with an allyloxy group gave stereoselectively tricyclic

compound 48a by cyclization, 1,5-migration, and, finally, an

intramolecular cyclopropanation (Scheme12).73 By append-

ing the alkene to the 1,6-enyne through a silicon tether in

substrate 13t, we also obtained cyclic siloxane 48b with

high stereoselectivity.78 In an intermolecular variant of this

process, reaction of 1,6-enyne 13uwith alkene 49 gave 50,

which was converted into the antiviral sesquiterpene (þ)-

schisanwilsonene (51) by a stereoselective route that in-

cludes a divinyl cyclopropane rearrangement. In this last

example, it is interesting to remark that the cyclization/1,5-

acetoxy migration is faster that the alternative 1,2-acyloxy

migration that would lead to racemization.78

6. Gold(I)-Catalyzed Cascade Reactions of
Oxoenynes
1,6-Enyne 13v with a carbonyl group at the alkenyl side

chain reacts in the presence of gold(I) to give oxatricyclic

derivative 52a by a cascade [2 þ 2 þ 2] alkyne/alkene/

carbonyl cycloaddition in which two C�C and one C�O

bonds are formed (Scheme 13).79 Diene 53 was also ob-

tained as a minor product. This reaction probably takes

place by nucleophilic opening of the cyclopropane ring of

intermediate 54 by the carbonyl group to form an oxonium

cation 55, which gives 56 by a Prins-type intramolecular

reaction closing a seven-membered ring. Intermediate 56

then gives oxatricyclic derivative 52a by metal elimination

or diene 53 by a fragmentation process. The [2 þ 2 þ 2]

cycloaddition of substrates 13w and 13x led to more

functionalized tricyclic products 52b and 52c, which were

transformed into the natural products (þ)-orientalol F (57)80

and (�)-englerin A (58).81 Another total synthesis of 58 used

a very similar gold(I) catalyzed reaction as the key step.82

The remarkable stereochemical control exerted by the pro-

pargylic stereocenter in the cyclizations of substrates 13w

and 13x is identical to that observed in the cyclization

proceeding via 1,5-OR migration through intermediate 44

(Scheme 11).77 Interestingly, attack of a carbonyl group to

SCHEME 11. Gold(I)-Catalyzed 1,5-Migration of OR Groups in Dienyne
13r

SCHEME 12. Reactions of 1,6-Enynes via 1,5-Migration of OR
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the cyclopropyl gold carbene is faster than the 1,5-migration

of the propargylic OR groups.

Intermolecular reactions of 1,6-enynes with carbonyl

compounds in the presence of gold(I) catalysts lead to a

variety of products depending on the substitution pattern of

the alkene.83�85 Thus, for example, 1,6-enyne 13y reacts

with 2,4,6-trimethylbenzaldehyde to give the product of

formal [2 þ 2 þ 2] cycloaddition 59a, along with diene 60a,

resulting from a metathesis-type reaction (Scheme 14).83

When the reaction was performed with 13z and 1-pyrene-

carboxaldehyde, 1,3-diene 60b was obtained as the major

compound. Formation of the [2 þ 2 þ 2] cycloaddition

products of type 59 can be explained by attack of the

aldehyde to cyclopropyl gold(I) intermediate 61 to give

oxonium cation 62, followed by Prins cyclization to form

tetrahydropyranyl cation 63 andmetal elimination. Metath-

esis-type products 60 could be formed by a fragmentation of

63, analogous to that observed in the intramolecular gold(I)-

catalyzed reaction of oxo-1,6-enynes (Scheme 13).79

Oxo-1,5-enynes such as E- and Z-64 also undergo gold(I)-

catalyzed cyclization to form tricyclic derivatives 65a and

65b, respectively (Scheme 15).86 When gold(I) complexes

with donating ligands are used as catalysts, the major cyclo-

isomerization pathway proceeding through intermediates

66 and 67 is stereospecific. However, the stereoselectivity is

only moderate in the case of E-64, which is consistent with

the existence of two competitive pathways, supporting

again the proposal for stepwise processes via discrete inter-

mediates in gold(I) catalyzed cascade reactions.

The intermolecular gold(I)-catalyzed reaction of terminal

alkynes with oxoalkenes of type 68 leads to 8-oxabicyclo-

[3.2.1]oct-3-enes 69 by a similar [2 þ 2 þ 2] cycloaddition

process through intermediates70 inwhich twoC�Candone

C�O bonds are formed (Scheme 16).87

7. Concluding Remarks
Many reactions of 1,n-enynes and related substrates cata-

lyzed by gold(I) bear certain resemblance with carbocationic

processes promoted by Brønsted or Lewis acids. How-

ever, gold(I) catalysts orchestrate complex reactions with

SCHEME 13. Intramolecular [2 þ 2 þ 2] Alkyne/Alkene/Carbonyl
Cycloaddition of Oxo-1,6-enynes

SCHEME 14. Intermolecular [2 þ 2 þ 2] Alkyne/Alkene/Carbonyl
Cycloaddition of 1,6-Enynes with Aldehydes
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exquisite regio- and stereocontrol, by stabilizing the key

reactive cationic intermediates. Although in a few cases

the reactions proceed through open carbocations, most

transformations are stereospecific. The basic mechanistic

pathways involved in the cycloisomerization of 1,n-enynes

are reasonablywell understood, although still the factors that

control the many competitive pathways are still rather ob-

scure, particularly in intermolecular reactions. Nevertheless,

complex cascade transformations can now be designed

based on relatively simple principles. This journey to gain

mechanistic insight into this family of complex transforma-

tionshasalso led to thediscoveryof robust, yethighly reactive

cationic catalysts such as A and D bearing bulky phosphines,

which are among the most useful gold(I) catalysts.
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